
ASTRON 449, Winter 2019 – Problem Set 3

Due Thu Feb. 14, in class.

REGULAR PROBLEMS:

1. Filling the gaps in Jeans equation derivations. 1) In class, we derived an expression for

the second Jeans equation in Cartesian coordinates,

∂(νv̄j)

∂t
+
∂(νvivj)

∂xi
+ ν

∂Φ

∂xj
= 0. (1)

Showing all intermediate steps, show that this equation can be rewritten in a form analog to Euler’s

equation for fluids:

ν
∂v̄j
∂t

+ νv̄i
∂v̄j
∂xi

= −ν ∂Φ

∂xj
−
∂(νσ2

ij)

∂xi
. (2)

b) Starting from the Jeans equation for a steady-state spherical system in hydrostatic balance,

1

ν

∂(νσ2
rr)

∂r
+ 2

(σ2
rr − σ2

t1)

r
= −GM(r)

r2
, (3)

show that

M(r) = −rσ
2
rr

G

[
d ln ν

d ln r
+
d lnσ2

rr

d ln r
+ 2β(r)

]
. (4)

This formulation is useful because it shows how the mass enclosed is directly related to the slope

of the number density and radial velocity dispersion profiles with radius.

2. BH radius of influence. For nearby elliptical galaxies, typical values are MBH = 108 M� and

σ|| = 200 km s−1. Evaluate the radius of influence of such a galaxy. Calculate the angular size of

the radius of influence in arcsec assuming that the galaxy is d = 20 Mpc away, which is also typical

of galaxies in which central black holes are studied using stellar dynamics. The angular resolution

at which spectroscopy can be done accurately with current instruments is about 0.1 arcsec. What

does this imply for measurements of central black hole masses using stellar dynamics? Comment on

the importance of the Hubble Space Telescope and adaptive optics, which provide the best angular

resolutions available today.

3. Distribution function for an isothermal sphere. In this problem, you will fill the gaps in

the example given in class. Consider a system with distribution function

f(E) =
ρ1

(2πσ2)3/2
exp

(
Ψ− 1

2v
2

σ2

)
, (5)

where ρ1 and σ are constants, and Ψ is a time-independent relative potential.

a) Show that the density distribution

ρ =

∫
d3vf(E) = ρ1 exp (Ψ/σ2). (6)

– 2 –

b) Using Poisson’s equation and looking for solutions of the form ρ = Cr−b, show that a self-

consistent solution for the density distribution is the singular isothermal sphere

ρ =
σ2

2πGr2
. (7)

Note that this solution is not unique and that it is also possible to obtain solutions that are finite

at r = 0 by enforcing suitable boundary conditions.

c) Show that the velocity dispersion 〈v2〉 = 3σ2 everywhere. Hint: To evaluate the integrals in this

problem, you may find it useful to use the result

1√
2πσ

∫ ∞
−∞

dx exp (−x2/2σ2) = 1 (8)

(normalization of a Gaussian) but should otherwise show all the steps in your calculation.

4. Distribution function for an arbitrary spherical potential. a) For a general distribu-

tion function that is a function of E only and assuming that the mass distribution is spherically-

symmetric, show that

ρ(r) = 4π

∫ Ψ

0
dEf(E)

√
2(Ψ− E). (9)

b) Assume that both ρ(r) and Ψ(r) are monotonic functions of r (otherwise, the system would have

a cavity in it and would generally be unstable). Then we may consider ρ to be a function of Ψ.

Show that
1

π
√

8

dρ

dΨ
=

∫ Ψ

0
dE f(E)√

Ψ− E
. (10)

Hint: Remember Leibniz’s integral differentiation rule.

c) This is an Abel integral equation for f(E). Use Abel’s transform to invert it and show that

f(E) =
1

π2
√

8

d

dE

∫ E
0

dΨ√
E −Ψ

dρ

dΨ
. (11)

Differentiate the integral to show that

f(E) =
1

π2
√

8

[∫ E
0

d2ρ

dΨ2

dΨ√
E −Ψ

+
1√
E

(
dρ

dΨ

)
Ψ=0

]
. (12)

Since f(E) must be ≥ 0, equation (11) shows that a spherical density distribution ρ(r) can arise

from a distribution function that is a function of E only (an “ergodic” distribution function) if, and

only if, the integral on the right hand side of that equation is a monodically increasing function of

E . In practice, this requires ρ(r) to drop sufficiently rapidly with radius.

– 3 –

d) What is the anisotropy parameter β for a system with distribution function f = f(E)? Ex-

plain your answer.

COMPUTATIONAL PROBLEMS:

Reminder concerning units: Treat Newton’s constant G as a variable whose value can be mod-

ified in the code. By default, we work in dimensionless units and set G = 1.

In this problem set, we will start evolving realistic N -body simulations for N � 1.

C1. Direct summation code. Write a Python program that evolves the phase-space coordinates

(x, y, z, vx, vy, vz) of a list of N particles with masses m1, ...,mN using the direct summation

method. Design your program so that it can be run using a command of the form

python dsum.py input_data integr t dt eps dt_out output_base

where input data is an ASCII file containing a list of particle masses and initial phase-space

coordinates in the format

1 m1 x1 y1 z1 vx1 vy1 vz1

2 m2 x2 y2 z2 vx2 vy2 vz2

...

N mN xN yN zN vxN vyN vzN

(the first column is a particle ID that allows us to keep track of particles at different times).

As before, integr is a string specifying the integration algorithm (you need only implement the

leapfrog option for this problem), t is the duration of the integration, and dt is the time-step.

In your code, evaluate gravitational forces using a Plummer softening kernel, with softening length

(the constant b in class notes) specified by the command line parameter eps.

We want two kinds of output files for this program.

The first is a file that summarizes “global” diagnostic quantities for the system of N particles at

each integration time-step. Design your program so that this global diagnostic file is written in

ASCII format

t0 Epot0 Ekin0 Etot0 absL0

t1 Epot1 Ekin1 Etot1 absL1

...

tM EpotM Ekin EtotM absLM

to the file named output base global.dat, where output base is the string specified in the com-

mand line, and “ global.dat” is a suffix indicating the global diagnostics. The diagnostic entries

in this file are similar to the ones that we tracked in our code to integrate the orbit of a single

– 4 –

test particle, except that we now keep track of the total potential energy of the N -body system

(Epot), its total kinetic energy (Ekin), as well as the total mechanical energy (Etot). absL is the

magnitude of the total angular momentum vector relative to the origin.

We also need the full particle data at different times (positions and velocities, in the same format

as input data), but we don’t want to output this full information at every integration time-step

dt (this would produce too much data). Instead, we output the full particle data only at longer

time intervals dt out, also specified in the command line. The full particle data should be written

to files named “output base parts x.dat,” where here x = 0, 1, 2, ... indicates the “snapshot

number” (corresponding to simulation time x × dt out).

Note: The most computationally expensive parts of the code involve computing the accelerations

and total gravitational potential energy of the system, since each scales as O(N2). To speed up

your code, you can use NumPy to perform the calculations on arrays of particles. This can be more

than 10× faster than pure Python loops and may be necessary for you to evolve simulations with

larger N in reasonable time.

C2. Gravitational collapse of a sphere. You will now use your code to simulate the gravita-

tional collapse of an initial particle distribution. Download the following input files from the course

web site, which you will use as initial conditions (ICs) for simulations: homo sph Nx R3 v1.dat,

where x=200, 500, 1000.

Each of these corresponds to a statistically homogeneous sphere of radius R = 3 (particle posi-

tions are random within the sphere). In each case, all particles have the same mass m such that

1/
√
Gρ = 1 within the sphere (i.e., the free fall time is unity) and x specifies the number of particles

N . The particles are given small initial random velocities.

a) Use your direct summation code to evolve these three sets of ICs to a final time t = 5 using

the leapfrog integrator and a Plummer softening length eps=0.2. Output the full particle data at

intervals dt out=0.1 so that you have enough information to do all the analysis you will need.

You will need to choose an integration time-step dt such that your results are well converged, which

you can assess by checking conservation of total mechanical energy. The requirements for this can

be quite stringent as the particle distribution collapses to the center, so you may need rather small

dt ∼ 0.0001.

b) For each N , produce a multi-panel plot as in Figure 1, showing the ICs, particle snapshots (xy

maps) at t = 0.5, 1, 2, 3, 4, 5, and energy and angular momentum statistics. For the energy

panel, plot Etot/Etot,0 as a diagnostic of total energy conservation and Ekin/|Epot| as a diagnostic

of the partition between kinetic and potential energy.

c) We will see in class that the system can be considered “virialized” when it relaxes to a state with

Ekin/|Epot| ≈ 0.5. Compare the time needed for virialization (tvir) of the initial particle distribu-

– 5 –

tions indicated by your simulations with estimates for the following time scales: the initial free fall

time (tff,0), the crossing time shortly after virialization (tcross), and the two-body relaxation time

(trelax). By considering how tvir and trelax vary with N , determine whether two-body relaxation

drives virialization in this simulation (justify your answer).

d) Read section 4.10.2 on phase mixing and violent relaxation in BT2 to gain insight into the

process that drives virialization in your simulations.

To upload: Your three plots (for N = 200, 500, 1000); example global output and final (t = 5)

particle data files for the N = 200 simulation; a copy of your Python code; and answers to the

questions above.

Fig. 1.— Example multi-panel plot to summarize the results of your N−body simulations.

